Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 159, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013160

RESUMO

Abnormalities in brain glucose metabolism and accumulation of abnormal protein deposits called plaques and tangles are neuropathological hallmarks of Alzheimer's disease (AD), but their relationship to disease pathogenesis and to each other remains unclear. Here we show that succinylation, a metabolism-associated post-translational protein modification (PTM), provides a potential link between abnormal metabolism and AD pathology. We quantified the lysine succinylomes and proteomes from brains of individuals with AD, and healthy controls. In AD, succinylation of multiple mitochondrial proteins declined, and succinylation of small number of cytosolic proteins increased. The largest increases occurred at critical sites of amyloid precursor protein (APP) and microtubule-associated tau. We show that in vitro, succinylation of APP disrupted its normal proteolytic processing thereby promoting Aß accumulation and plaque formation and that succinylation of tau promoted its aggregation to tangles and impaired microtubule assembly. In transgenic mouse models of AD, elevated succinylation associated with soluble and insoluble APP derivatives and tau. These findings indicate that a metabolism-linked PTM may be associated with AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/metabolismo , Processamento de Proteína Pós-Traducional , Ácido Succínico/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Animais , Autopsia , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Placa Amiloide/genética , Placa Amiloide/patologia , Agregados Proteicos , Proteólise , Proteoma/genética , Proteoma/metabolismo , Proteínas tau/genética
2.
J Neurochem ; 158(2): 282-296, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33905124

RESUMO

Metabolic changes that correlate to cognitive changes are well-known in Alzheimer's disease (AD). Metabolism is often linked to functional changes in proteins by post-translational modifications. The importance of the regulation of transcription by acetylation is well documented. Advanced mass spectrometry reveals hundreds of acetylated proteins in multiple tissues, but the acetylome of human brain, its functional significance, and the changes with disease are unknown. Filling this gap is critical for understanding the pathophysiology and development of therapies. To fill this gap, we assessed the human brain acetylome in human brain and its changes with AD. More than 5% of the 4,442 proteins from the human brain global proteome were acetylated. Acetylated proteins were primarily found in the cytosol (148), mitochondria (100), nucleus (91), and plasma membrane (58). The comparison of the brain acetylome in controls to that of patients with AD revealed striking and selective differences in terms of its abundances of acetylated peptides/sites. Acetylation of 18 mitochondrial proteins decreased, while acetylation of two cytosolic proteins, tau and GFAP, increased. Our experiments demonstrate that acetylation at some specific lysine sites alters enzyme function. The results indicate that general activation of de-acetylases (i.e., sirtuins) is not an appropriate therapeutic approach for AD.


Assuntos
Acetilação , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Metaboloma/genética , Proteínas Mitocondriais/metabolismo , Idoso , Idoso de 80 Anos ou mais , Química Encefálica , Biologia Computacional , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Complexo Cetoglutarato Desidrogenase/metabolismo , Lisina/metabolismo , Masculino , Processamento de Proteína Pós-Traducional , Complexo Piruvato Desidrogenase/metabolismo , Frações Subcelulares/metabolismo , Proteínas tau/metabolismo
3.
J Neurochem ; 156(6): 867-879, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32865230

RESUMO

Mitochondria and releasable endoplasmic reticulum (ER) calcium modulate neuronal calcium signaling, and both change in Alzheimer's disease (AD). The releasable calcium stores in the ER are exaggerated in fibroblasts from AD patients and in multiple models of AD. The activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a key mitochondrial enzyme complex, is diminished in brains from AD patients, and can be plausibly linked to plaques and tangles. Our previous studies in cell lines and mouse neurons demonstrate that reductions in KGDHC increase the ER releasable calcium stores. The goal of these studies was to test whether the relationship was true in human iPSC-derived neurons. Inhibition of KGDHC for one or 24 hr increased the ER releasable calcium store in human neurons by 69% and 144%, respectively. The effect was mitochondrial enzyme specific because inhibiting the pyruvate dehydrogenase complex, another key mitochondrial enzyme complex, diminished the ER releasable calcium stores. The link of KGDHC to ER releasable calcium stores was cell type specific as the interaction was not present in iPSC or neural stem cells. Thus, these studies in human neurons verify a link between KGDHC and releasable ER calcium stores, and support the use of human neurons to examine mechanisms and potential therapies for AD.


Assuntos
Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/enzimologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Imuno-Histoquímica , Complexo Cetoglutarato Desidrogenase/metabolismo , Potássio/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
4.
J Alzheimers Dis ; 78(3): 989-1010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33074237

RESUMO

BACKGROUND: In preclinical models, benfotiamine efficiently ameliorates the clinical and biological pathologies that define Alzheimer's disease (AD) including impaired cognition, amyloid-ß plaques, neurofibrillary tangles, diminished glucose metabolism, oxidative stress, increased advanced glycation end products (AGE), and inflammation. OBJECTIVE: To collect preliminary data on feasibility, safety, and efficacy in individuals with amnestic mild cognitive impairment (aMCI) or mild dementia due to AD in a placebo-controlled trial of benfotiamine. METHODS: A twelve-month treatment with benfotiamine tested whether clinical decline would be delayed in the benfotiamine group compared to the placebo group. The primary clinical outcome was the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog). Secondary outcomes were the clinical dementia rating (CDR) score and fluorodeoxyglucose (FDG) uptake, measured with brain positron emission tomography (PET). Blood AGE were examined as an exploratory outcome. RESULTS: Participants were treated with benfotiamine (34) or placebo (36). Benfotiamine treatment was safe. The increase in ADAS-Cog was 43% lower in the benfotiamine group than in the placebo group, indicating less cognitive decline, and this effect was nearly statistically significant (p = 0.125). Worsening in CDR was 77% lower (p = 0.034) in the benfotiamine group compared to the placebo group, and this effect was stronger in the APOEɛ4 non-carriers. Benfotiamine significantly reduced increases in AGE (p = 0.044), and this effect was stronger in the APOEɛ4 non-carriers. Exploratory analysis derivation of an FDG PET pattern score showed a treatment effect at one year (p = 0.002). CONCLUSION: Oral benfotiamine is safe and potentially efficacious in improving cognitive outcomes among persons with MCI and mild AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/tratamento farmacológico , Tiamina/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Compostos de Anilina , Apolipoproteína E4/genética , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Progressão da Doença , Etilenoglicóis , Feminino , Fluordesoxiglucose F18 , Produtos Finais de Glicação Avançada/sangue , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tiamina/uso terapêutico , Resultado do Tratamento
5.
J Neurosci Res ; 95(11): 2244-2252, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28631845

RESUMO

Succinylation of proteins is widespread, modifies both the charge and size of the molecules, and can alter their function. For example, liver mitochondrial proteins have 1,190 unique succinylation sites representing multiple metabolic pathways. Succinylation is sensitive to both increases and decreases of the NAD+ -dependent desuccinylase, SIRT5. Although the succinyl group for succinylation is derived from metabolism, the effects of systematic variation of metabolism on mitochondrial succinylation are not known. Changes in succinylation of mitochondrial proteins following variations in metabolism were compared against the mitochondrial redox state as estimated by the mitochondrial NAD+ /NADH ratio using fluorescent probes. The ratio was decreased by reduced glycolysis and/or glutathione depletion (iodoacetic acid; 2-deoxyglucose), depressed tricarboxylic acid cycle activity (carboxyethyl ester of succinyl phosphonate), and impairment of electron transport (antimycin) or ATP synthase (oligomycin), while uncouplers of oxidative phosphorylation (carbonyl cyanide m-chlorophenyl hydrazine or tyrphostin) increased the NAD+ /NADH ratio. All of the conditions decreased succinylation. In contrast, reducing the oxygen from 20% to 2.4% increased succinylation. The results demonstrate that succinylation varies with metabolic states, is not correlated to the mitochondrial NAD+ /NADH ratio, and may help coordinate the response to metabolic challenge.


Assuntos
Proteínas Mitocondriais/metabolismo , Ácido Succínico/metabolismo , Animais , Linhagem Celular Tumoral , Desoxiglucose/farmacologia , Camundongos , NAD/metabolismo , Organofosfonatos/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Succinatos/metabolismo
6.
J Neurochem ; 139(5): 823-838, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27580471

RESUMO

Reductions in metabolism and excess oxidative stress are prevalent in multiple neurodegenerative diseases. The activity of the mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) appears central to these abnormalities. KGDHC is diminished in multiple neurodegenerative diseases. KGDHC can not only be rate limiting for NADH production and for substrate level phosphorylation, but is also a source of reactive oxygen species (ROS). The goal of these studies was to determine how changes in KGDHC modify baseline ROS, the ability to buffer ROS, baseline glutathionylation, calcium modulation and cell death in response to external oxidants. In vivo, reducing KGDHC with adeno virus diminished neurogenesis and increased oxidative stress. In vitro, treatments of short duration increased ROS and glutathionylation and enhanced the ability of the cells to diminish the ROS from added oxidants. However, long-term reductions lessened the ability to diminish ROS, diminished glutathionylation and exaggerated oxidant-induced changes in calcium and cell death. Increasing KGDHC enhanced the ability of the cells to diminish externally added ROS and protected against oxidant-induced changes in calcium and cell death. The results suggest that brief periods of diminished KGDHC are protective, while prolonged reductions are harmful. Furthermore, elevated KGDHC activities are protective. Thus, mitogenic therapies that increase KGDHC may be beneficial in neurodegenerative diseases. Read the Editorial Highlight for this article on Page 689.


Assuntos
Complexo Cetoglutarato Desidrogenase/deficiência , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia
7.
Neurochem Int ; 96: 32-45, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26923918

RESUMO

Brain activities of the mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) are reduced in Alzheimer's disease and other age-related neurodegenerative disorders. The goal of the present study was to test the consequences of mild impairment of KGDHC on the structure, protein signaling and dynamics (mitophagy, fusion, fission, biogenesis) of the mitochondria. Inhibition of KGDHC reduced its in situ activity by 23-53% in human neuroblastoma SH-SY5Y cells, but neither altered the mitochondrial membrane potential nor the ATP levels at any tested time-points. The attenuated KGDHC activity increased translocation of dynamin-related protein-1 (Drp1) and microtubule-associated protein 1A/1B-light chain 3 (LC3) from the cytosol to the mitochondria, and promoted mitochondrial cytochrome c release. Inhibition of KGDHC also increased the negative surface charges (anionic phospholipids as assessed by Annexin V binding) on the mitochondria. Morphological assessments of the mitochondria revealed increased fission and mitophagy. Taken together, our results suggest the existence of the regulation of the mitochondrial dynamism including fission and fusion by the mitochondrial KGDHC activity via the involvement of the cytosolic and mitochondrial protein signaling molecules. A better understanding of the link among mild impairment of metabolism, induction of mitophagy/autophagy and altered protein signaling will help to identify new mechanisms of neurodegeneration and reveal potential new therapeutic approaches.


Assuntos
Doença de Alzheimer/enzimologia , Autofagia/fisiologia , Líquido Intracelular/enzimologia , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Doença de Alzheimer/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Líquido Intracelular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Organofosfonatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Succinatos/farmacologia
8.
J Neurochem ; 134(1): 86-96, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25772995

RESUMO

Reversible post-translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins remain unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α-ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans-succinylase that mediates succinylation in an α-ketoglutarate-dependent manner. Inhibition of KGDHC reduced succinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl-CoA suggests that the catalysis owing to the E2k succinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. Reversible post-translation modifications of proteins are common and may regulate many processes. Succinylation of proteins occurs and causes large changes in the structure of proteins. However, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins remains unknown. The results demonstrate that the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) can succinylate multiple mitochondrial proteins and alter their function. Succinylation appears to be a major signaling system and it can be mediated by KGDHC.


Assuntos
Acil Coenzima A/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sirtuínas/metabolismo
9.
Metab Brain Dis ; 29(4): 1083-93, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24748364

RESUMO

Thiamine dependent enzymes are diminished in Alzheimer's disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer's Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca(2+) homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca(2+)-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca(2+) export (-60%) or import (-40%). Different aspects of mitochondrial Ca(2+) coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20-25%) by inhibition of mitochondrial Ca(2+) export, and inhibition of mitochondrial Ca(2+) uptake exaggerated CCE (+53%). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca(2+) released from ER following rapid activation of InsP3R and serve as a negative feedback to the CCE. The results suggest that mitochondrial Ca(2+) modifies the depletion and refilling mechanism of ER Ca(2+) stores.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Tiamina/fisiologia , Doença de Alzheimer/patologia , Animais , Células Cultivadas , Fibroblastos/metabolismo , Homeostase , Humanos , Indóis/farmacologia , Inositol 1,4,5-Trifosfato/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Transporte de Íons , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Neurônios/metabolismo
10.
Neurobiol Aging ; 33(6): 1121.e13-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22169199

RESUMO

Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer's disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K(+) depolarization that occurs in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long-term (days), or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long-term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that affect endoplasmic reticulum calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium.


Assuntos
Doença de Alzheimer/enzimologia , Cálcio/fisiologia , Complexo Cetoglutarato Desidrogenase/deficiência , Mitocôndrias/enzimologia , Proteínas Mitocondriais/deficiência , Doença de Alzheimer/fisiopatologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética
11.
Neurochem Res ; 35(12): 2107-16, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20734230

RESUMO

Diminished thiamine (vitamin B1) dependent processes and oxidative stress accompany Alzheimer's disease (AD). Thiamine deficiency in animals leads to oxidative stress. These observations suggest that thiamin may act as an antioxidant. The current experiments first tested directly whether thiamin could act as an antioxidant, and then examined the physiological relevance of the antioxidant properties on oxidant sensitive, calcium dependent processes that are altered in AD. The first group of experiments examined whether thiamin could diminish reactive oxygen species (ROS) or reactive nitrogen species (RNS) produced by two very divergent paradigms. Dose response curves determined the concentrations of t-butyl-hydroperoxide (t-BHP) (ROS production) or 3-morpholinosydnonimine ((SIN-1) (RNS production) to induce oxidative stress within cells. Concentrations of thiamine that reduced the RNS in cells did not diminish the ROS. The second group of experiments tested whether thiamine alters oxidant sensitive aspects of calcium regulation including endoplasmic reticulum (ER) calcium stores and capacitative calcium entry (CCE). Thiamin diminished ER calcium considerably, but did not alter CCE. Thiamine did not alter the actions of ROS on ER calcium or CCE. On the other hand, thiamine diminished the effect of RNS on CCE. These data are consistent with thiamine diminishing the actions of the RNS, but not ROS, on physiological targets. Thus, both experimental approaches suggest that thiamine selectively alters RNS. Additional experiments are required to determine whether diminished thiamine availability promotes oxidative stress in AD or whether the oxidative stress in AD brain diminishes thiamine availability to thiamine dependent processes.


Assuntos
Cálcio/metabolismo , Oxidantes/farmacologia , Tiamina/farmacologia , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Espécies Reativas de Oxigênio/metabolismo
12.
Neurochem Int ; 54(2): 111-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19041676

RESUMO

Resveratrol, a polyphenol found in red wine, peanuts, soy beans, and pomegranates, possesses a wide range of biological effects. Since resveratrol's properties seem ideal for treating neurodegenerative diseases, its ability to diminish amyloid plaques was tested. Mice were fed clinically feasible dosages of resveratrol for forty-five days. Neither resveratrol nor its conjugated metabolites were detectable in brain. Nevertheless, resveratrol diminished plaque formation in a region specific manner. The largest reductions in the percent area occupied by plaques were observed in medial cortex (-48%), striatum (-89%) and hypothalamus (-90%). The changes occurred without detectable activation of SIRT-1 or alterations in APP processing. However, brain glutathione declined 21% and brain cysteine increased 54%. The increased cysteine and decreased glutathione may be linked to the diminished plaque formation. This study supports the concept that onset of neurodegenerative disease may be delayed or mitigated with use of dietary chemo-preventive agents that protect against beta-amyloid plaque formation and oxidative stress.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Placa Amiloide/genética , Placa Amiloide/patologia , Estilbenos/uso terapêutico , Animais , Antioxidantes/farmacocinética , Ácido Ascórbico/metabolismo , Benzotiazóis , Western Blotting , Encéfalo/metabolismo , Ventrículos Cerebrais/patologia , Cisteína/metabolismo , Feminino , Glutationa/metabolismo , Hipocampo/patologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Resveratrol , Sirtuína 1 , Sirtuínas/metabolismo , Estilbenos/farmacocinética , Tiazóis , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Free Radic Biol Med ; 39(8): 979-89, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16198225

RESUMO

Abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from patients with Alzheimer disease (AD) and in fibroblasts and neurons from transgenic mice bearing a presenilin-1 (PS-1) mutation. Bombesin-releasable endoplasmic reticulum Ca2+ stores (BRCS) are exaggerated in all of these cells. Our previous studies show that H2O2 exaggerates BRCS. The goal of the present study was to determine whether select reactive species exaggerate BRCS in cultured human fibroblasts and to determine if the ability of fibroblasts to handle these specific oxidant species is altered in cells from AD patients. Two fluorescent indicators were used to distinguish different reactive oxygen species (ROS): 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) (c-DCF) and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM). ROS were produced by a variety of oxidants, including tert-butyl-hydroxyperoxide (t-BHP), hypoxanthine/xanthine oxidase, S-nitroso-N-acetylpenicillamine, 3-morpholinosydnonimine, and sodium nitroprusside. Different oxidants selectively induced various ROS in distinct patterns. These oxidants also induced selective modification in [Ca2+]i and/or BRCS. Of the several oxidants tested, t-BHP was most specific for exaggerating BRCS without affecting basal [Ca2+]i and inducing only c-DCF-detectable ROS. On the other hand, the results show that NO that reacted with DAF-FM was not responsible for alterations in BRCS. Furthermore, the c-DCF-detectable ROS production induced by t-BHP was higher in fibroblasts from AD patients bearing a PS-1 mutation (n = 7) than in those from aged controls (n = 8). The higher production of c-DCF-detectable ROS may underlie the exaggeration of BRCS in fibroblasts from AD patients. Thus, these results are consistent with the hypothesis that abnormalities in selective cellular ROS cause AD-related changes in intracellular calcium regulation.


Assuntos
Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Oxidantes/farmacologia , Bombesina/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Fibroblastos/efeitos dos fármacos , Fluoresceínas/análise , Humanos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , terc-Butil Hidroperóxido/farmacologia
14.
Ann N Y Acad Sci ; 1042: 272-8, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15965072

RESUMO

The alpha-ketoglutarate dehydrogenase complex (KGDHC) is a mitochondrial enzyme in the TCA cycle. Inhibition of KGDHC activity by alpha-keto-beta-methyl-n-valeric acid (KMV) is associated with neuron death. However, the effect of KMV in microglia is unclear. Therefore, we investigated the effect of KMV on BV-2 microglial cells exposed to hypoxia or oxidative stress. The results showed that KMV (1-20 mM) enhanced the cell viability under hypoxia. KMV dose-dependently reduced ROS and LDH releases from hypoxic BV-2 cells. KMV also reduced ROS production and enhanced the cell viability under H2O2 but failed to reduce the SIN-1 and sodium nitroprusside (SNP) toxicity. KMV also reduced caspase-3 and -9 activation under stress. These results suggest that KMV protects BV-2 cells from stress and acts by reducing ROS production through inhibition of KDGHC.


Assuntos
Hipóxia Celular/fisiologia , Citoproteção/efeitos dos fármacos , Cetoácidos/farmacologia , Microglia/efeitos dos fármacos , Estresse Oxidativo , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Peróxido de Hidrogênio/farmacologia , Microglia/citologia , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
J Biol Chem ; 280(12): 10888-96, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15649899

RESUMO

The activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC) declines in brains of patients with several neurodegenerative diseases. KGDHC consists of multiple copies of E1k, E2k, and E3. E1k and E2k are unique to KGDHC and may have functions independent of the complex. The present study tested the consequences of different levels of diminished E2k mRNA on protein levels of the subunits, KGDHC activity, and physiological responses. Human embryonic kidney cells were stably transfected with an E2k sense or antisense expression vector. Sense control (E2k-mRNA-100) was compared with two clones in which the mRNA was reduced to 67% of control (E2k-mRNA-67) or to 30% of control (E2k-mRNA-30). The levels of the E2k protein in clones paralleled the reduction in mRNA, and E3 proteins were unaltered. Unexpectedly, the clone with the greatest reduction in E2k protein (E2k-mRNA-30) had a 40% increase in E1k protein. The activity of the complex was only 52% of normal in E2k-mRNA-67 clone, but was near normal (90%) in E2k-mRNA-30 clone. Subsequent experiments tested whether the physiological consequences of a reduction in E2k mRNA correlated more closely to E2k protein or to KGDHC activity. Growth rate, increased DCF-detectable reactive oxygen species, and cell death in response to added oxidant were proportional to E2k proteins, but not complex activity. These results were not predicted because subunits unique to KGDHC have never been manipulated in mammalian cells. These results suggest that in addition to its essential role in metabolism, the E2k component of KGDHC may have other novel roles.


Assuntos
Aciltransferases/fisiologia , Complexo Cetoglutarato Desidrogenase/fisiologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Complexo Cetoglutarato Desidrogenase/química , NAD/metabolismo , Subunidades Proteicas , RNA Antissenso/fisiologia , Espécies Reativas de Oxigênio
16.
J Biomed Sci ; 11(4): 472-81, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15153782

RESUMO

Nicotinamide (vitamin B(3)) reduces the infarct volume following focal cerebral ischemia in rats; however, its mechanism of action has not been reported. After cerebral ischemia and/or reperfusion, reactive oxygen species (ROS) and reactive nitrogen species may be generated by inflammatory cells through several cellular pathways, which can lead to intracellular calcium influx and cell damage. Therefore, we investigated the mechanisms of action of nicotinamide in neuroprotection under conditions of hypoxia/reoxygenation. Results showed that nicotinamide significantly protected rat primary cortical cells from hypoxia by reducing lactate dehydrogenase release with 1 h of oxygen-glucose deprivation (OGD) stress. ROS production and calcium influx in neuronal cells during OGD were dose-dependently diminished by up to 10 mM nicotinamide (p < 0.01). This effect was further examined with OGD/reoxygenation (H/R). Cells were stained with the fluorescent dye 4,6-diamidino-2-phenylindole (DAPI) or antibodies against anti-microtubule-associated protein-2 and cleaved caspase-3. Apoptotic cells were studied using Western blotting of cytochrome c and cleaved caspase-3. Results showed that vitamin B(3) reduced cell injury, caspase-3 cleavage and nuclear condensation (DAPI staining) in neuronal cells under H/R. In addition, nicotinamide diminished c-fos and zif268 immediate-early gene expressions following OGD. Taken together, these results indicate that the neuroprotective effect of nicotinamide might occur through these mechanisms in this in vitro ischemia/reperfusion model.


Assuntos
Isquemia Encefálica/prevenção & controle , Hipóxia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Niacinamida/farmacologia , Animais , Apoptose , Cálcio/metabolismo , Caspase 3 , Caspases/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Glucose/metabolismo , L-Lactato Desidrogenase/metabolismo , Modelos Biológicos , Neurônios/patologia , Oxigênio/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reperfusão
17.
Neuroreport ; 14(14): 1815-9, 2003 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-14534426

RESUMO

Sesame antioxidants have been shown to inhibit lipid peroxidation and regulate cytokine production. In this study, we focused on the effect of sesamin and sesamolin, on nitric oxide (NO) induction by lipopolysaccharides (LPS) in the murine microglial cell line BV-2 and rat primary microglia. The results showed that sesamin and sesamolin significantly inhibited NO production, iNOS mRNA and protein expression in LPS-stimulated BV-2 cells. Sesamin or sesamolin significantly reduced LPS-activated p38 MAPK of BV-2 cells. Furthermore, SB203580, a specific inhibitor of p38 MAP kinase, dose-dependently inhibited NO production in LPS-stimulated BV-2 cells. Taken together, the inhibition of NO production might be due to the reduction of LPS-induced p38 MAPK signal pathway by sesamin and sesamolin.


Assuntos
Antioxidantes/farmacologia , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óleo de Gergelim/química , Animais , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno , Lipopolissacarídeos/farmacologia , Microglia/enzimologia , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Gravidez , Piridinas/farmacologia , RNA Mensageiro/biossíntese , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , gama-Tocoferol/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
18.
J Neurosci Res ; 74(2): 309-17, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14515360

RESUMO

Mitochondrial dysfunction has been implicated in cell death in many neurodegenerative diseases. Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a key and arguably rate-limiting enzyme of the Krebs cycle, occurs in these disorders and may underlie decreased brain metabolism. The present studies used alpha-keto-beta-methyl-n-valeric acid (KMV), a structural analogue of alpha-ketoglutarate, to inhibit KGDHC activity to test effects of reduced KGDHC on mitochondrial function and cell death cascades in PC12 cells. KMV decreased in situ KGDHC activity by 52 +/- 7% (1 hr) or 65 +/- 4% (2 hr). Under the same conditions, KMV did not alter the mitochondrial membrane potential (MMP), as assessed with a method that detects changes as small as 5%. KMV also did not alter production of reactive oxygen species (ROS). However, KMV increased lactate dehydrogenase (LDH) release from cells by 100 +/- 4.7%, promoted translocation of mitochondrial cytochrome c to the cytosol, and activated caspase-3. Inhibition of the mitochondrial permeability transition pore (MPTP) by cyclosporin A (CsA) partially blocked this KMV-induced change in cytochrome c (-40%) and LDH (-15%) release, and prevented necrotic cell death. Thus, impairment of this key mitochondrial enzyme in PC12 cells may lead to cytochrome c release and caspase-3 activation by partial opening of the MPTP before the loss of mitochondrial membrane potentials.


Assuntos
Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Doenças Neurodegenerativas/enzimologia , Neurônios/enzimologia , Animais , Caspase 3 , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Ciclosporina/farmacologia , Citocromos c/metabolismo , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Cetoácidos/farmacologia , L-Lactato Desidrogenase/metabolismo , Metaloproteinases da Matriz/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Necrose , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Células PC12 , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
19.
Eur J Neurosci ; 16(11): 2103-12, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12473078

RESUMO

An inflammatory response in the central nervous system mediated by activation of microglia is a key event in the early stages of the development of neurodegenerative diseases. Silymarin is a polyphenolic flavanoid derived from milk thistle that has anti-inflammatory, cytoprotective and anticarcinogenic effects. In this study, we first investigated the neuroprotective effect of silymarin against lipopolysaccharide (LPS)-induced neurotoxicity in mesencephalic mixed neuron-glia cultures. The results showed that silymarin significantly inhibited the LPS-induced activation of microglia and the production of inflammatory mediators, such as tumour necrosis factor-alpha and nitric oxide (NO), and reduced the damage to dopaminergic neurons. Therefore, the inhibitory mechanisms of silymarin on microglia activation were studied further. The production of inducible nitric oxide synthase (iNOS) was studied in LPS-stimulated BV-2 cells as a model of microglia activation. Silymarin significantly reduced the LPS-induced nitrite, iNOS mRNA and protein levels in a dose-dependent manner. Moreover, LPS could induce the activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase but not extracellular signal-regulated kinase. The LPS-induced production of NO was inhibited by the selective p38 MAPK inhibitor SB203580. These results indicated that the p38 MAPK signalling pathway was involved in the LPS-induced NO production. However, the activation of p38 MAPK was not inhibited by silymarin. Nevertheless, silymarin could effectively reduce LPS-induced superoxide generation and nuclear factor kappaB (NF-kappaB) activation. It suggests that the inhibitory effect of silymarin on microglia activation is mediated through the inhibition of NF-kappaB activation.


Assuntos
Encefalite/tratamento farmacológico , Gliose/tratamento farmacológico , Microglia/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Neurotoxinas/antagonistas & inibidores , Substâncias Protetoras/farmacologia , Silimarina/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Encefalite/metabolismo , Encefalite/fisiopatologia , Feto , Gliose/metabolismo , Gliose/fisiopatologia , Proteínas Quinases JNK Ativadas por Mitógeno , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotoxinas/metabolismo , Neurotoxinas/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos F344 , Proteínas Quinases p38 Ativadas por Mitógeno
20.
J Cell Biochem ; 84(2): 367-76, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11787066

RESUMO

The neuroprotective effect of MK801 against hypoxia and/or reoxygenation-induced neuronal cell injury and its relationship to neuronal nitric oxide synthetase (nNOS) expression were examined in cultured rat cortical cells. Treatment of cortical neuronal cells with hypoxia (95% N(2)/5% CO(2)) for 2 h followed by reoxygenation for 24 h induced a release of lactate dehydrogenase (LDH) into the medium, and reduced the protein level of MAP-2 as well. MK801 attenuated the release of LDH and the reduction of the MAP-2 protein by hypoxia, suggesting a neuroprotective role of MK801. MK801 also diminished the number of nuclear condensation by hypoxia/reoxygenation. The NOS inhibitors 7-nitroindazole (7-NI) and N (G)-nitro-L-arginine methyl ester (L-NAME), as well as the Ca(2+) channel blocker nimodipine, reduced hypoxia-induced LDH, suggesting that nitric oxide (NO) and calcium homeostasis contribute to hypoxia and/or the reoxygenation-induced cell injury. The levels of nNOS immunoactivities and mRNA by RT-PCR were enhanced by hypoxia with time and, down regulated following 24 h reoxygenation after hypoxia, and were attenuated by MK801. In addition, the reduction of nNOS mRNA levels by hypoxia/reoxygenation was also diminished by MK801. Further delineation of the mechanisms of NO production and nNOS regulation are needed and may lead to additional strategies to protect neuronal cells against hypoxic/reoxygenation insults.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Hipóxia/enzimologia , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase/metabolismo , Traumatismo por Reperfusão/enzimologia , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Primers do DNA , Óxido Nítrico Sintase Tipo I , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...